Comparison of atomic layer deposited Al2O3 and (Ta2O5)0.12(Al2O3)0.88 gate dielectrics on the characteristics of GaN-capped AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors

Potter, Richard, Chalker, Paul, Partida Manzanera, Teresa and Roberts, Joseph (2019) Comparison of atomic layer deposited Al2O3 and (Ta2O5)0.12(Al2O3)0.88 gate dielectrics on the characteristics of GaN-capped AlGaN/GaN metal-oxide-semiconductor high electron mobility transistors. [Data Collection]

Original publication URL: https://doi.org/10.1063/1.5049220

Description

The current research investigates the potential advantages of replacing Al2O3 with (Ta2O5)0.12(Al2O3)0.88 as a higher dielectric constant (κ) gate dielectric for GaN-based metal-oxide-semiconductor high electron mobility transistors (MOS-HEMTs). The electrical characteristics of GaN-capped AlGaN/GaN MOS-HEMT devices with (Ta2O5)0.12(Al2O3)0.88 as the gate dielectric are compared to devices with Al2O3 gate dielectric and devices without any gate dielectric (Schottky HEMTs). Compared to the Al2O3 MOS-HEMT, the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT achieves a larger capacitance and a smaller absolute threshold voltage, together with a higher two-dimensional electron gas carrier concentration. This results in a superior improvement of the output characteristics with respect to the Schottky HEMT, with higher maximum and saturation drain current values observed from DC current-voltage measurements. Gate transfer measurements also show a higher transconductance for the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT. Furthermore, from OFF-state measurements, the (Ta2O5)0.12(Al2O3)0.88 MOS-HEMT shows a larger reduction of the gate leakage current in comparison to the Al2O3 MOS-HEMT. These results demonstrate that the increase in κ of (Ta2O5)0.12(Al2O3)0.88 compared with Al2O3 leads to enhanced device performance when the ternary phase is used as a gate dielectric in the GaN-based MOS-HEMT.

Keywords: GaN-HEMT, atomic-layer-deposition, ALD, gate-dielectric
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Richard Potter
Date Deposited: 26 Jul 2019 11:28
Last Modified: 26 Jul 2019 11:28
DOI: 10.17638/datacat.liverpool.ac.uk/921
URI: https://datacat.liverpool.ac.uk/id/eprint/921

Available Files

Read me

Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0
Creative Commons: Attribution 3.0

Metadata Export