The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM

Chalker, Paul, Potter, Richard, Hall, Stephen, Brunell, Ian, Sedghi, Naser, Dawson, Karl, Gibbon, James and Dhanak, Vin (2017) The role of nitrogen doping in ALD Ta2O5 and its influence on multilevel cell switching in RRAM. [Data Collection]

Description

The role of nitrogen doping on the stability and memory window of resistive state switching in N-doped Ta2O5 deposited by atomic layer deposition is elucidated. Nitrogen incorporation increases the stability of resistive memory states which is attributed to neutralization of electronic defect levels associated with oxygen vacancies. Density functional simulations with screened exchange hybrid functional approximation show that the incorporation of nitrogen dopant atoms in the oxide network removes the O vacancy midgap defect states, thus nullifying excess defects and eliminating alternative conductive paths. By effectively reducing the density of vacancy-induced defect states through N doping, 3-bit multilevel cell switching is demonstrated, consisting of eight distinctive resistive memory states achieved by either controlling the set current compliance or the maximum voltage during reset. Nitrogen doping has a threefold effect; widening the switching memory window to accommodate more intermediate states, improving the stability of states, and providing gradual reset for multi-level cell switching during reset. The N-doped Ta2O5 devices have relatively small set and reset voltages (< 1 V) with reduced variability due to doping.

Keywords: Resistive-switching random access memory, Atomic Layer Deposition, N-doped Ta2O5
Divisions: Faculty of Science and Engineering > School of Engineering
Depositing User: Paul Chalker
Date Deposited: 26 Apr 2017 16:08
Last Modified: 26 Apr 2017 16:09
DOI: 10.17638/datacat.liverpool.ac.uk/253
URI: https://datacat.liverpool.ac.uk/id/eprint/253

Available Files

Read me

Creative Commons: Attribution 4.0

Metadata Export